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Abstract 

The possibility that a wall dominated phase, during which S - t*, 

could solve the horizon and flatness problems is examined. It is 

difficult to do this and still have a homogenous universe at the time of 

nucleosynthesis. The issues of baryogenesis, the monopole problem, and 

density fluctuations are also discussed. In order to gracefully exit 

the wall dominated phase it is proposed that the walls decay via hole 

formation. The details of that process are discussed in an Appendix. 
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I. Introduction 

In this paper I will address the question of whether or not a wall 

dominated era can account for the current state of the universe. In a 

1974 paper Zel’dovich etal.’ considered the possibility that a wall 

dominated era could solve the horizon problem. The essential point of 

their paper was that if domain walls dominate the stress-energy of the 

universe the scale factor of the universe grows quadratically in time, 

i.e. S - t2. In any model where S grows faster than t one has the 

potential to solve the horizon problem since causal regions get 

stretched out.2 This situation is reminiscent of inf lat ion3 as 

introduced by Guth, hence the name -- wall dominated inflation. To 

avoid confusion I will refer to any model where S grows faster than t as 

inflation, the Guth scenario as “normal” inflation and wall dominated 

inflation as “wall dominated” inflation. 

The original motivation for this paper was to notice that a wall 

dominated era would improve not only the horizon problem, but the 

flatness and monopole problems as well. Unfortunately, in the original 

paper by Zel’dovich etal. there was no clear proposal for ending the 

wall dominated era. Then, in the past few years, Vilenkin and Everett4 

and Sikivie5 have discussed models where domain walls form that are 

classically stable but topologically unstable. As a result the walls 

decay via hole formation. The process is a tunneling phenomenon quite 

similar to the decay of the false vacuum. ’ With this in mind it seemed 

that wall dominated inflation might solve all the cosmological problems 

solved by normal inflation. It is the main issue of this paper to 

determine if this might indeed be possible. 
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Before proceeding, I would like to suggest two possible advantages 

that wall dominated inflation might have over normal inflation. First, 

wall dominated inflation does not appear to have a graceful exit 

problem.3’7 The decay of the walls is exponential in time while the 

expansion of the universe is only a power of t. Eventually the 

tunneling process wins out; the universe always escapes from the wall 

dominated era. Admittedly, the graceful exit problem has been solved 

quite nicely in nnewu8 versions of inflation; however, the solutions 

always entail some unnatural setting of parameters. 8*g Second, normal 

inflation requires that the effective cosmological constant be zero (A = 

0) today but non-zero at some time in the past. If one assumes, as is 

usually done, that the current value of the cosmological constant is 

zero due to a fine tuning of parameters in the Lagrangian then one has 

an extreme problem of naturalness. On the other hand, if one assumes a 

dynamical explanation for A = 0 today, then it is difficult to 

understand why the same dynamical mechanism was not effective during the 

inflationary epoch. Wall dominated inflation does not require a 

non-zero cosmological constant and so a dynamical mechanism explaining A 

= 0 might be acceptable. 

The rest of this paper consists of parts II-V and an appendix. The 

second part outlines a simple scenario for studying wall dominated 

inflation, defines all the relevant terms, and shows how the horizon and 

flatness problems are improved by wall dominated inflation. The third 

part examines the horizon and flatness problems in detail with, alas, a 

negative result. The fourth part is a discussion of other cosmological 

issues in the context of wall dominated inflation: the graceful exit, 

baryon production, galaxy formation and the monopole problem. Section V 
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presents a summary. Throughout the body of the paper it is assumed that 

the walls will decay after some time T d. There is an appendix which 

discusses at some length how to build a model where classically stable 

but topologically unstable walls may be created and subsequently decay. 

II. Wall Dominated Inflation 

In this section I present the basic scenario which will form the 

framework for the rest of this paper. I will assume that the stress 

energy of the universe can be described by a Friedman-Robertson-Walker 10 

metric. Although one can argue with the validity of these assumptions, 

they do form a basis for studying the effects of different microphysics 

on the history of the universe. 

At the Planck time the universe is assumed to be radiation 

dominated. It is also assumed that the curvature term in the FRW 

equations is initially small enough that the universe can evolve to the 

point where inflation begins. At some time, tw, the universe cools to 

the point where it passes through a phase transition” in which walls 

are formed (see the Appendix for details of the wall structure). For 

some time after that the universe continues to be radiation dominated. 

During this time the walls are becoming a more important component of 

the stress energy tensor, until at time t, the walls dominate the 

radiation. At this point inflation begins and continues from then until 

the walls decay at time td. 

When the walls decay the energy of the walls goes into reheating 

the universe. Directly after the walls decay the matter of the universe 

is mostly contained in hot sheets of relativistic particles, i.e. the 

fossil walls. It is assumed that the sheets thicken at roughly the 
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speed of light until t,, when the sheets will have thickened to the 

point that neighboring sheets have overlapped. During the time when the 

fossil walls are thickening I have used a radiation (p = 3p) equation of 

state. This is an assumption, based on the observation that matter 

within the fossil walls is relativistic. It neglects the energy 

associated with the bulk fluid motion within the thickening walls. 

Also, during this era the temperature is not homogeneous. Rather, it is 

a function not only of time but of position within the sheets. When I 

refer to a temperature during this epoch it should be thought of as an 

effective temperature T(td < t < t,) - ~c>“~, where <p> is an average 

over a volume that includes many sheets. After the sheets merge the 

universe will continue to expand as per the standard big bang picture. 

For future reference, I use the following definitions; tN -- time 

of nucleosynthesis, t m -- time when matter dominates, to -- today. 

Other variables are used with appropriate subscripts, as defined in the 

previous paragraphs. For example, the density when the walls first 

dominate the stress-energy is p* =_ p(tx). 

I can now give a description of wall dominated inflation. The 

Einstein equations for a FRW universe reduce to 

(i/S)2 = 81&p/3 - K/S2 

s/s = -4nC/3 (p + 3p) 

(1) 

(2) 

where p is the density, Newton’s constant is G = l/m* 
P’ mP = 1.2 x 10’9 

GeV , p is the pressure, * indicates d/dt, S is the cosmic scale factor, 

and K = 1, 0, -1 is the curvature. To solve eqns. (1,2) one must have 

an equation of state or, equivalently, some knowledge of how the density 
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scales with S. For comparison with what follows recall that during a 

radiation dominated era p = 1/3p, p - l/z?, S - t”’ and that during 

normal inflation p = -p, p = A 4 = constant, S - eHt where H = (81r/3)“~ 

A2/mp is the Hubble constant during inflation. 

The energy density in walls is 

p = a/h (3) 

where o is the energy density per unit area and ), is the typical spacing 

between walls. For most purposes it is sufficient to set 0 = p3, where 

IJ is the mass scale associated with the underlying theory responsible 

for the walls. It is expected that the walls form when the temperature 

drops below a critical value Tc 5 ~. 

For most of this paper I will assume that ?, >- t. If the scale of 

walls is less than the horizon then it is assumed that short range 

physics can act over a horizon length to dissipate the energy in walls. 

On the other hand, if h > t no microphysics can act due to causality. 

As a result, A - S as long as the walls are outside each other’s 

horizon. During a radiation or matter dominated era t grows faster than 

S. Eventually walls come within each other’s horizon and, as a result, 

A = t. During an inflationary epoch S grows faster than t and A - S. 

Zel’dovich, etal.’ have discussed what happens when walls dominate 

the stress-energy tensor and h - S. From eqn. (3) one finds p - l/S. 

Since the curvature term in the Einstein equations scales as 1 /s2, one 

may conclude that curvature becomes less important during a wall 

dominated era. The flatness problem is improved. Further, since I 

assumed curvature was unimportant at the start of inflation it can be 
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neglected throughout the wall dominated era. This allows one to find 

simple solutions to the Einstein equations. The pressure is defined by 

p = -dE/dV. Since E = pV3 - V2’3, the pressure during wall dominance is 

p = -213 p. With this pressure and p - l/S, the solution to the Einstein 

equations is S - t2. A wall dominated era is inflationary. 

It may appear that the above argument is circular. I started by 

assuming that h - S, found that S - t2, and concluded that A - S. What 

if A develops in a different manner? To study this question it is 

convenient to use comoving coordinates; h - xS, where x is the typical 

interwall spacing in comoving coordinates. Then 

. . . . . 
A = xS + XS = xs + AS/S (4) 

The first term in eqn. (4) is a dynamical term arising from local 

processes such as walls annihilating with each other. In general, 

causality restricts this term to ?S < 1. The second term is due to 

cosmological expansion. If AS/S > xs, then expansion dominates the 

behavior of A and one finds A - S. In our case, AS/S - A(GP)"~ - 

A(P~/DIEA)“~. At the beginning of wall dominance I have supposed that A* 

=t,=mp/g St 1 /2T2 where g is the effective number of degrees of freedom 

in thermal equilibrium. Further, at that time p3/A* = gTi, and as a 

result (AS/S), I 1. Cosmological expansion dominates the behavior of A 

immediately upon wall dominance. 

It is possible that the annihilation of walls is not particularly 

efficient so that its = E << 1. As long as the dynamic term dominates 

eqn. (4) one finds A = E or A I Et. At the time of wall dominance h, = 

Et*, with the consequence that (AS/S)* = E. Again one finds inflation, A 
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= s - t2, S’ lnce expansion dominates dynamics as soon as wall dominance 

starts. 

III. The Horizon and Flatness Problems 

Up till now I have shown that wall dominated inflation has the 

potential to solve the horizon and flatness problems, but does it really 

work? How much inflation is necessary? 

Begin by considering the horizon problem. An observer looking at 

the night sky will notice that the universe appears to be isotropic and 

homogeneous. This fact could be nicely explained if different parts of 

the observable universe were to have been in thermal contact at some 

time in the past, but otherwise it is somewhat of a mystery. Suppose 

our observer sees photons, originating from different regions, that were 

emitted at some time, te. The separation of the emitting regions is 

t0 currently so = So 1 t l/Sdt=t,, where I have omitted factors of order 
e 

1 involving details of integration and the angular separation of the 

sources. At the time the photons were emitted the separation was 

Se = so se/so = to se/so (5) 

In order for these two regions to have been in thermal contact by the 

time of emission it is necessary that the particle horizon at te be 

greater than the separation of the sources; i.e. de > se; where de = Se 

P l/S dt. As long as S grows slower than t, such as in a radiation (S 

- t1’2) or matter dominated universe (S - t2’3), de is determined by the 

upper limit of the integral; de I t e. This fact leads to the horizon 

problem; te < to Se/So for matter or radiation dominance and therefore 
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de < se. The two regions under observation could not have been in causal 

contact during the past. 

The horizon problem can be solved if at some time in the past the 

universe was inflationary. In the case at hand the universe is supposed 

t0 have been wall dominated from t, until td, with S - t2 during that 

time. In that case 

de = se cl td 
l/s dt + te l/S dt] 

td 
(6) 

There are two contributions to the horizon. The second, after 

inflation, is given by te __ the upper limit of integration. The first 

contribution comes during the inflationary epoch when the particle 

horizon is dominated by the lower limit of the integral. During this 

time a region of past causal contact is increasing in size due to the 

cosmic expansion. Photon propagation is relatively unimportant during 

this phase. It follows that the first contribution to de is roughly 

t*(Se/SI), where t* is the particle horizon at the onset of inflation. 

Together the two terms give 

d e : t*(S,/S*) + t,. (7) 

It is possible to have the first term be much greater than the second. 

To solve the horizon problem it is required that de > se or using eqn. 

(5) 

so/s* 1 to/t*. (8) 
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If one uses the scaling laws for the various epochs: wall (S/S,) = 

(t/t*)2, radiation (S/Sd) = (t/t,)“’ and matter dominated (S/S,) = 

(t/tm)2’3, then eqn. (8) gives a result for the scale factor and 

temperature at the time of wall decay. 

Sd 2 (S* s, SOP3 (9) 

or Td < 0%' Tm To? (10) 

In the last expression Td is the effective temperature after reheating, 

Td = (pd) 1’4. Eqns. (9,lO) give a condition on the amount of wall 

dominated inflation that must occur if the horizon problem is to be 

solved. 

Now consider the flatness problem. A measure of the importance of 

curvature in the universe is given by the ratio of the two terms on the 

right hand side of the Einstein equation (l), 

a z 3~18~~s~. (11) 

(In more common terminology one defines the Hubble constant Hz 5/S, the 

critical density p, z 3H2/81rG, and the density parameter R = p/p,. Then, 

a = O(l - a).) During a radiation era (x - S2, during matter dominance CL 

- s. The flatness problem arises when one realizes that the universe 

today is near critical density so that co 5 1. At early times, c1 = 

(s,/so)(s/s,)2 << 1; for example, in the standard big bang model, at the 

grand unification scale (T - 1015 GeV) one must impose the condition CL <_ 

10-52. 
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A wall dominated era can solve the flatness problem. During the 

inflationary epoch p - 1 /S and therefore a - 1 /S. For demonstrative 

PurPoses assume that Q* = 1 and ask how much inflation is required to 

have a0 I I. (This does not really solve the flatness problem as one 

must still explain why cl* should be equal to one; however, it is a 

minimum condition that must be met.) The simplest procedure is to note 

that p - l/t2 during wall, radiation, and matter dominance. Then, cxo c 

1 implies 

a0 = (p*s~/p,s~)a*=(s~/tZ)(t~/s~) < 1 (12) 

which is identical to eq”. (8) derived from the analysis of the horizon 

problem. It follows that eqns. (9,101 describe the minimum amount of 

inflation necessary to solve the flatness problem. The result that the 

Same condition applies for both the horizon and flatness problems should 

not be surprising. If one thinks of a as the amplitude of a curvature 

fluctuation then CL should have roughly the same value at both horizon 

CrOSSi”gS,“~‘2 which is the result shown in eqn. (12). 

It would appear that the previous analysis tells us how much 

inflation is needed and we can proceed to other concerns, such as 

baryogenesis. Unfortunately, there is a major problem: ensuring that 

the universe is homogeneous and isotropic. Consider the state of the 

universe just after the walls decay. The matter is not distributed 

homogeneously. Rather it is in sheets that mimic the location of the 

walls just prior to their decay. As the universe ages these sheets 

thicken at roughly the speed of light. Once the sheets have thickened 

enough that the voids between the sheets are filled in the universe can 
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achieve homogeneity. This happens when the thickness of the sheets, e, 

is equal to the typical spacing of the walls, A. In order to achieve 

homogeneity one must have P. >_ A. Since the sheets thicken at the speed 

of light e = S It 
td 

l/S dt = t. From the beginning of the inflationary 

epoch on, the walls scale with the expansion of the universe, A = A, 

S’S,. In the model it was supposed that before inflation started 

microphysics could act and thus A was roughly equal to the particle 

horizon, A, = t+. The condition for homogeneity today is then Lo = to > 

t* so/s* = A0 or so/s* < to/t*. Comparing this result with eqn. (8) one 

arrives at the disappointing conclusion that it is not possible to solve 

the horizon and flatness problems via wall dominated inflation and still 

have a homogeneous universe today. 

Actually, the contradiction is much worse. There is good evidence 

from big bang nucleosynthesis14 that the universe was homogeneous at the 

time of nucleosynthesis, tN. One might barely hope to solve the horizon 

and flatness Problems at tN by setting SR/S* = tN/tx, but then one must 

account for the additional growth of these problems between 

nucleosynthesis and today. 13 it possible that Helium production might 

have occurred before the sheets merged? I think that the answer is most 

certainly no. The problem is that the temperature might be expected to 

fall faster than in the standard Helium production scenarios due to the 

free expansion perpendicular to the walls. Recall that the fraction of 

Helium depends on how long neutrons can freely beta decay before they 

are frozen into Helium. If that time is too short then too many 

neutrons survive and the Helium fraction is too high. The temperature 

probably cools too fast in the remnant walls; however, a detailed 

calculation for an expanding wall is needed to confirm this suspicion. 
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A possible way out of this predicament would be to start the 

inflationary period with more than one wall per horizon. One can 

estimate how many walls would be necessary by demanding that the horizon 

and flatness problems be solved today and that the sheets merge by tN. 

Let the scale of the walls at the beginning of inflation be A* = E t*, 

I” order to solve our problem we need AR = tN, where AN = 

(%)(S,/S,)(S,/S,) and tN = t* (Sd/S*) “2(sN/sd)2. The value of Sd is 

determined from eqn. (9) so as to solve the horizon problem. Solving 

for E, one finds that 

E = cs~/smso, “2=[TmTo,@‘2 = 1o-8. (13) 

It is difficult to understand how such a small value of E could occur. 

This is especially true if the phase transition during which the walls 

were formed occurred at a mass scale, U, associated with grand 

unification. The smallest reasonable value for A would be a coherence 

length of order l/u. In that case, E = l/ut = pi/m 
P = 10 

-4 9 which is, 

-8 unfortunately, much greater than 10 . 

IV. Other Cosmological Issues 

Despite the bad news about the flatness and horizon problems it is 

still worth asking what happens to other cosmological issues in the 

Context of a wall dominated era. 

Since it was one of the motivations for considering wall dominated 

inflation, the first problem I will address is that of exitting the 

inflationary phase. Guth realized that his original inflationary 

scenario had a fatal flaw.3v7 He hoped that during a first order phase 
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transition bubbles of true vacuum would grow and coalesce. The time for 

the phase transition to complete would be the tunneling time for bubble 

formation. Unfortunately the phase transition is never completed. Once 

the universe gets into an inflationary phase the scale of the universe 

expands exponentially. There is then a competition between two 

exponential processes. If bubble formation wins the competition it will 

win it very quickly, before any inflation occurs. If inflation wins the 

competition then the phase transition is never completed. I” short 

(although subsequent work81g has seemingly solved the “graceful exit” 

problem) the original inflationary scenario did not work. 

It iS easy to show that the decay of walls does not have a graceful 

exit problem. This is done by showing that the proper area of walls 

goes to zero at large time. By comparison, in normal inflation the 

comoving volume of false vacuum goes to zero, but the proper volume in 

false vacuum still grows exponentially. Furthermore, the bubbles of 

true vacuum do not percolate, i.e. they do not form clusters of 

infinite extent. 

Consider the proper area of wall, A, within some comoving volume. 

A3 the universe expands, A - S2 - t4. Then, dA/dt = 4A/t, due to 

expansion. Let the rate of hole formation per proper area be i”. The 

rate in the comoving volume is then fA. One can show that holes which 

form at time t reach a limiting comoving radius, x = t/S, where S is the 

scale factor at the time the hole forms. Therefore, a hole that forms 

at time t effectively reduces the area of wall by i7S2x2 = rrt2. The total 

effective loss of area is dA/dt = -nrt2A. Combining this with the 

expansion effect 
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(14) 

Eventually there will be no area left in walls and, therefore, no 

graceful exit problem. The era of Wall decay, 'Cd, is roughly defined by 

dA/dt < 0 or 

td = (lTr/4)"3 (15) 

The next problem to consider is that of baryogenesis.'5 The first 

step is to calculate the reheating temperature. This can be done using 

eqn. (10) if one knows the value of T *. Suppose that the scale of walls 

at the time of wall dominance is A, = et.+. Then the condition that prad 

= P wall gives g*T$ = p3/A, = u3g?‘2Tz/emp. Solving for T* one finds 

T, = 112 
u [u/E0 mp3 

l/2 

Plug into eqn. (10) and find 

2 l/6 
Td = P CTmTo/e2g,mpl = u 10-10 ,-l/3 

(‘6) 

(17) 

For the case where E = 1 and the mass scale of the walls is in the range 

of 10’5 < )I < 10’9 GeV, as per grand unification ideas, then eqn. (17) 

gives a reheating temperature of Td - lo5 - log GeV. This is 

uncomfortably low for the usual picture of baryon production. 

Fortunately, the physics is different in our case as well. When the 
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wall is just going through its decay the material right around the wall 

is very far out of thermal equilibrium. One can consider the wall as a 

collection of scalars, each of mass li which are decaying freely. Let 

the probability that any one scalar produce a baryon be p. Then the 

number density of baryons is nb = nsp, where ns - pd/” is the number 

density of scalars. After thermalization the number density of photons 

iSn -T 
Y 

36. The baryon to photon ratio is then given as 

or, using eqn. (16) with E = 1 

nb/ny~lo . -lop 

(18) 

(19) 

The observed baryon to photon ratio is about lo-lo. To get this result 

it is necessary to postulate a net production of one baryon per scalar 

decay. This is probably not acceptable within the current knowledge of 

grand unified theories.15 If one relaxes the assumption of one wall per 

horizon at t, then 

nb/ny = E -1~3,0-lop* (20) 

The situation gets better. With maximal CP violation in scalar decay 

one can only get p - lo-'. If one chooses E - 10-8, so as to solve the 

flatness and horizon problems, an acceptable baryon number is produced. 
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Next, I will address myself to the problem of density perturbations 

in the context of wall dominated inflation. Recall that the prediction 

of the so called Harrison-Zel’dovich’6, spectrum was first a great 

failing and then a great success for new models of inflation. There are 

two major points to be studied: the initial perturbation spectrum at t, 

and the evolution of that spectrum until today. 

First, examine the evolution problem. In order to solve the 

horizon problem, the whole of the observable universe must have been 

contained within the horizon at t,. That means that any physically 

interesting scale today (e.g. galaxies, superclusters) must have 

originated from a region much smaller than the horizon at t,. The 

evolution of a perturbation can then be broken into three pieces: a) 

from t* until the perturbation crosses the horizon; b) the period of 

time that the perturbation spends outside the horizon; and c) the time 

at which the perturbation comes back into the horizon until today. 

The growth of perturbations during part c) is fairly well 

understood and will not be discussed here. Up until a few years ago 

part b) of a perturbation’s history was quite murky but recent work has 

clarified the behaviour of perturbations on scales longer than the 

horizon.“*12 The crucial point is that no causal physics can act on 

scales larger than the horizon, so that the perturbation evolves 

kinematically. In the uniform Hubble constant gauge one finds12 

6~1~ = AC(HS/K)* + (219) l/(l+w)]-’ (21) 

where A is a constant, H = S/S, K is the comoving wave number (S/K is 

the physical wavelength), and w = p/p describes the equation of state. 
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For almost all equations of state l/l+w is a number of order 1 

(specifically, during wall dominated inflation w = -213, l/(l+w) = 3) 

while the perturbation is outside the horizon (HS/K) >> 1 and Liie 1/1+w 

term can be neglected. In that case 6p/p = A(K/SH)*, so the 

perturbation has the same amplitude at both horizon crossings. Note 

that for a nearly flat universe, H2 = BnGp/3, so 6p/p - l/pS2 - a. 

Density perturbations outside the horizon grow in the same manner that 

curvature does. (The exception to this statement is that of normal 

inflation. Then w = -1 so that l/l+w is the dominant term in eqn. (21) 

at the horizon crossing during inflation.) 

The final epoch to consider is part a), the time the perturbation 

spends before it leaves the horizon. This period is far more 

complicated than the other two due to the possibility that dynamics can 

play a significant role for perturbations within a horizon. For’ 

example, it might be possible for pressure support to keep a 

perturbation from growing. The crucial quantity is the speed of sound, 

v’, = 6p/6p. Perturbations in the density of walls will have associated 

pressure perturbations, 6p = -213 6p, so v’, = -2/3. However, one may 

also have energy perturbations due to the walls peculiar velocity and 

these perturbations will have vz > 0. 

Another possibility is that relativistic motion of walls will 

effectively damp out perturbations whose scale is smaller than the 

horizon. However, even if we make this assumption there will still be 

Poisson fluctuations due to the discrete nature of the walls. If the 

walls are moving fast enough to damp perturbations by their essentially 

random motions then their positions should be uncorrelated. This will 

lead to minimal density fluctuations 6(Q) - (A/Q)1’2, where Q is the 
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scale of the perturbation, Note that the power law is l/2, not 312, due 

to density correlations within a wall. (Even this simple power law is 

an approximation that ignores correlations due to bubbles or curvature 

of the walls.) For the rest of this discussion I will use this minimal 

spectrum, but it should be realized that the actual spectrum may be 

stronger. 

The decision to use a minimal spectrum allows one to ignore the 

nature of the initial spectrum at the time the walls form. The point is 

that any interesting perturbation scale today must have been processed 

within a causal volume during the early stages of wall-dominated 

inflation. Nevertheless, I will say a few words that are relevant for 

fluctuations in the density of walls for scales larger than the horizon 

at t e. There will be two types of perturbations in the wall density. 

The first type is due to the random initial positions of the walls, 6 - 

(,4/Q)1’2. These are perturbations in the equation of state: they cannot 

become true density perturbations until they interact dynamically. Such 

a perturbation cannot grow while outside the horizon, but upon 

reentering the horizon will act like a density perturbatiion of 

amplitude 6 - (x/Q)1’2. The second type of perturbations in the wall 

density are those induced by pre-existing fluctuations in the radiation. 

A slightly denser region of space will cool to the critical temperature 

for wall formation at a slightly later time. As a result the 

correlation length in those regions will be a smaller fraction of the 

horizon, and the density of walls will be higher. This second type of 

perturbation is a true curvature perturbation and may evolve while 

outside the horizon. The amplitude of such a perturbation iS a~free 

parameter depending only on initial conditions. 
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Again, if the processing of perturbations early in inflation is 

incomplete then the initial spectrum may be important; however, I am 

assuming that processing is complete. The resulting spectrum is 6H - 

(A/Q)“* upon leaving the horizon. Using eqn. (21) it is trivial to 

calculate that the perturbation amplitude upon reentering the horizon is 

1017 times the amplitude when the perturbation left, i.e. AH = (h/Q)“2 

for physically interesting perturbations. 

Is such a spectrum acceptable? The exact form of the perturbation 

spectrum needed at horizon crossing is still under debate. Details of 

the spectrum depend on what kind of matter (baryons, neutrinos, 

axions.. . ) is supposed to dominate the universe today and on the 

details of the galaxy formation process. In general, it is agreed that 

something similar to a Harrison-Zel’dovich spectrum is needed. Recall 

that this spectrum specifies that the perturbation amplitude, at horizon 

crossing is independent of scale. In order to agree with observations 

Of the 3’K blackbody spectrum l7 it is necessary to suppose that 6H ii 

10-4-10-5. If one abandons the Harrison-Zel’dovich spectrum one has 

problems. From galaxy formation and limits on the blackbody spectrum 

one constrains the amplitude at matter domination to be roughly 10e4. If 

6H increases for larger scales then one would find too much structure at 

large scales. If 6H increases on small scales then one must face the 

possibility of forming a large number of black holes for scales with 6H 

> 1. 

Now consider the candidate spectrum 6H I (A/Q)“‘. As described 

above, the scale is set by 6H(Tm = loev) = lo-‘. At horizon crossing the 

perturbation amplitude behaves as 6H - (h/t)“‘, so 
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(22) 

From eqn. (22) we see that there is no problem with excess large 

scale structure. However, when the walls are just coming back into the 

horizon, 6 will be of order 1. To get galaxies to come out right 

requires a possibility that black holes may form at about T, = 1 SeV, 

when 6H = 1 and A = t. Their mass would be about the horizon mass at 

that time, which turns out to be a solar mass. The number of black 

holes of one solar mass is bounded only by their contribution to the 

density of the universe. Once black holes form, their contribution to 

the energy density scales like matter, l/S3. If the black holes dominate 

the matter of the universe today then the fraction of matter, f, that 

goes into black holes at T iS bounded by f < Tm,T. For T, = 1 UeV and an 

R = 1 universe this gives -8 f<3xlO * which may or may not be an 

unreasonable number. 

Up till now I have ignored perturbations on scales smaller than h. 

This is because I do not expect any structure on scales smaller than A 

to survive. These scales come into the horizon while the fossil walls 

are still thickening. In assuming that the walls thicken it is 

implicitly assumed that pressure support and/or free streaming are 

sufficient to keep the walls from collapsing back on themselves. There 

will also be perturbations within the plane of any given wall. These 

will naturally be associated with the scale of hole formation in the 

walls at the time the walls decay. Statistical fluctuations in the 

density of holes will be small on physically interesting scales; 6(e) 5 
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Ct,/?-l, where td will be the typical size of a hole. The power law is 1 

due to the two dimensional character of the walls and point like nature 

of the holes. One might expect some black holes of mass M - p3t2d to 

result from this process for a = td, but no significant large scale 

structure can occur. 

I can now summarize the picture of density perturbations in wall 

dominated inflation. The minimum perturbation amplitude is roughly 6R = 

(1/e)“‘. To not conflict with observations of the 3’K background the 

temperature by which the walls must merge is roughly T, > 1 Ce”. Black 

holes of about one solar mass may result. The constraint on the walls 

merging is more stringent than that obtained for nucleosynthesis, T, = 

TN = I tiev. Translated into an initial density of walls at the 

beginning of inflation (A * = et.*) this constraint becomes (see eqn. 13) 

E < 10-1’. 

Lastly, consider the monopole problem.18 If one combines the 

standard model of cosmology with the concept of grand unification then 

one predicts that there should be many monopoles in the world today. A 

convenient measure is the ratio r =_ n,/s, where nm is the number density 

of monopoles and s is the entropy density. Then, allowing for some 

early annihilation, the expected value for r today is r. I jr)-“. 

Contrasted with this are many astrophysica119*20 and cosmological18 

arguments that place limits of r. < 10~~~. Some of the arguments are 

model dependent and some are much more restrictive, but it does not seem 

unreasonable to take this limit as indicative of the monopole problem.*’ 

It should be clear that an inflationary epoch can help solve the 

mOnOpOle problem.3 The number density of monopoles scales as rim - j/S3. 

During an adiabatic radiation or matter dominated era s - l/S3 as well 
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and r remains fixed. During wall dominated inflation the situation is 

dramatically different. At the end of inflation the energy stored in 

walls gets thermalized, so that sd = od3”. During the inflation the 

effective entropy density scales as s - p 3’4 - (1/~3)~‘~. As a result r 

decreases, r - nmjs - S-9’4. The scaling laws give S,/Sd = odlpx = 

T4/T4 d Y’ If one supposes enough inflation to solve the horizon and 

flatness problems and uses equations (10) and (16) then 

'd = r!+(&+/sd) 
914 = rx (T T ,&3’2 = 10-72r Ill0 * (23) 

where I have supposed that the walls are associated with the unification 

mass scale, u = 1015 GeV, to derive the last equality. Even for r* as 

high as 1 a satisfactory reduction can be achieved. One possible 

problem with this scenario is that when the walls decay there might be 

additional production of monopoles. As long as the grand unified 

Symmetry iS not restored this should not be a problem; however, if local 

temperatures near the decaying wall get hot enough one might worry about 

thermal production of monopoles. 

V. Summary 

In this paper I have examined the possibility that a wall dominated 

era could be used to solve the horizon and flatness problems. During a 

wall dominated epoch the universe grows as S - t*. As a result the size 

of a causal volume becomes much larger than the Hubble length, so the 

horizon problem may be solved. Furthermore, the effects of curvature 

decrease as l/S during the wall dominated era, so the flatness problem 

may also be solved. 
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Unfortunately, it does not appear likely that this scenario can 

work. The basic problem is one of reheating the universe. It is 

supposed that the wall dominated epoch ends when the walls decay via 

hole formation. The decay products will eventually reheat the universe, 

but this takes some time. Specifically, the decay products are 

initially arranged in thin sheets. Directly after the walls decay the 

universe is not homogeneous on scales smaller than the typical 

separation between walls. The universe does not appear homogeneous on 

small scales until the wall scale comes back into the horizon. While 

the walls are thickening the benefits of inflation are dissipating. 

To get a quantitative measure of this problem it is useful to 

define the parameter E as the ratio of the wall scale to the horizon 

Size at the beginning of the wall dominated era, hr = et*. In order to 

solve the horizon and flatness problems and still have a homogeneous 

universe at the time of nucleosynthesis requires E 5 1o-8. A more 

stringent, but less reliable, limit comes from density fluctuations, E < 

10-1’. It is difficult to understand how such small values of E could 

occur. If walls could annihilate efficiently one would expect E = 1. A 

more optimistic estimate assumes no annihilation after formation. Then, 

the natural value for E is E I u/M p, where the coherence length of the 

physics creating the walls is roughly l/u. For E = 10m8 this implies the 

walls form at a temperature of roughly Tw = U = 10” GeV. If you want 

to “solve” the flatness problem this is not good. The point is that one 

must now explain how the universe got to be that old without curvature 

being important. 
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Apart from the difficulty of producing a smooth homogeneous 

universe there do not appear to be any significant difficulties with 

wall dominated inflation. It seems feasible to produce enough baryons. 

The monopole problem is easily solved by the release of entropy when the 

walls decay. There is not a graceful exit problem in the sense that the 

inflationary epoch definitely ends. To get the inflation to end at an 

appropriate time requires a fine tuning of about one part in a hundred 

(see Appendix), which compares favorably with the fine tuning in models 

of “new” inflation. 

Before ending, I would like to take a more optimistic attitude 

towards the study of walls. Even though wall dominated inflation does 

not work as presented in this paper that does not mean that walls are 

unimportant in the history of the universe. One possibility is that a 

Wall dominated epoch in combination with some other non-standard (i.e. 

not radiation) era could account for our current universe. Besides 

Using particle physics to explain the current state of the universe one 

may use the state of the universe to place constraints on models of 

particle physics. In this regard any grand unified theory should be 

examined for the possible existence of unstable walls. 
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Appendix: Creating and Destroying Unstable Walls 

In the usual discussion of topological features of gauge theories 

the topological entities are stable. However, it is possible to create 

features that are not stable. An example is the domain walls of Sikivie5 

and Vilenkin and Everett4 which are unstable to the formation of holes 

in the walls. In this Appendix I present a toy model in which walls form 

that are unstable to hole formation. The walls form without holes in 

them, except for a small number caused by thermal fluctuations. This is 

important as it allows the walls to conformally stretch with the 

expansion of the universe. 

The model has scalar fields with an approximate SO(2) symmetry. The 

Lagrangian has linear, quadratic and quartic couplings. 

L = 1/2(ape.a!+) + v($) 

with V($) = (h/4) (($-$)-v2)2 + E(4.S) 

(Al 1 

where F, is defined to be dimensionless and of unit length. The 

dimensions of E are (mass3). Without the E(@*E) term V possesses an 

SO(2) symmetry. Although I<$>[ = v is fixed the direction of <e> in the 

internal space is a free function of position. The shape of V is the 

familiar ‘wine bottle’. When the s(e*E) term is turned on the shape of 

the potential is tilted, the SO(2) symmetry is broken, and a unique 

Value for <$> is picked out in the -5 direction. Now imagine that E is a 

function of temperature so that the sign of E changes as the temperature 

drops below some critical value. 

e(T) > 0, T > Tc (A2) 
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E(T) < 0, T < Tc 

At the same time that E is changing sign F, is kept fixed. The tilt of 

the potential changes sign but not direction. As a result of the change 

of tilt, the minimum of V moves from <$> = -vg to <@> = VE,. 

The path by which <@ moves from the old minimum to the new one is 

important. If the change in tilt is slow enough then <@ can be expected 

to stay in the ring of relative minima. Then there are two distinct 

paths (Fig. Al) by which <$> can move from its original to its final 

Value. Since C, is fixed these two paths are equally likely. The result 

is a broken Z2 symmetry. As with other broken discrete symmetries one 

finds walls. Here, the walls are between regions of space where <$> 

develops along different paths. In the usual discussion of walls, the 

domains on different sides of the wall are different vacua. In this 

case, the domains on either side are actually the same vacuum. It is the 

history followed in getting to that vacuum that distinguishes the 

domains. To see the difference in structure of the two types of wall see 

Fig. A2. 

A3 stated earlier, this type of wall is unstable. A hole can form 

in the wall by continuously letting $ go through 0. This is only 

possible because the domains on either side of the wall are the same. 

Although it is topologically possible to form a hole, it is classically 

forbidden because it entails a big cost in energy to drag @ over the 

hill in the potential at $ = 0. However, holes can still form by quantum 

tunneling or by thermal fluctuations. 
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In order for a wall dominated phase to occur the thermal tunneling 

mu3t be small. I a33ume this to be the case and concentrate on 

describing the quantum tunneling. In fact, there is a subtle point 

involving the parameter E and thermal tunneling. If E were zero at high 

T and turned on at some Tc then one would still get walls (this is 

precisely the case for axions). ‘3 However, these walls would end on 

strings. It is extremely unlikely to have an unbroken wall stretching 

O"tZl- many horizons. One expect3 the walls to annihilate in a time 

proportional to the string spacing. A3 a result there is no inflation 

for E = 0 models. 

One can estimate the decay rate per unit area, r, due to quantum 

tunneling by estimating the action to form a critical size hole, AC. 

The critical radius for a hole is determined by competition between the 

wall energy missing from the hole and the string energy at the edge of 

the hole. The edge of a hole, where @ = 0, is a string of the underlying 

approximate SO(2) symmetry. As such, the boundary of the hole has energy 

per unit length o3 = v2. From dimensional analysis one finds that the 

wall energy per unit area is roughly oH ii y 3/2,1/2. The critical size 

hole is then approximately Rc 5 a3/o = (V/E)1'2 and the critical action w 

i3A = 
c v3/c. Since the action shows up in an exponential one should 

WOtTy about factors of order one. In general, this requires a numerical 

Calculation, but in the limit that E << ~3 one can perform a simple 

analytic calculation similar to Coleman's6 thin wall approximation. In 

this "skinny" string approximation Rc = 2(v/Ej1'2 and A c = 64n/3 (v3/,). 
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Using this result with equation3 (A3, 15) one can estimate the lifetime 

of the walls. 

td 
= ,,” .Ac/3 r ,,” ,22.4 v3/, (A4) 

By making small adjustments in Y and E one can acquire large amounts of 

inflation. To end the inflation in a certain epoch require3 only a small 

amount (lo+) of fine tuning. 

As an example, suppose one wishes to choose (~31~) such a3 to solve 

the horizon and flatness problems and still preserve homogeneity at 

nucleosynthesis. Let the walls form at tw = mplv2. Then equation (All) 

give3 

td/t, = v/mp e 22.4 v3/c (A51 

Using equation (17) (with the temporary definition3 u + Y, E + n) one 

can calculate 

td/t, = (P),/pd) 112 = (TJT~)~ = 1020 ,213. (‘46) 

Recall that the value of n for this scenario is n = 10e8 and that the 

smallest reasonable value for q is n = v/m p. Then 

v3k = 1122.4 Ln(1020n-i'3) = 2.4 (A7) 

To keep the reheat temperature accurate to within an e-folding one must 

fine tune ‘~31~ to 4%. Before proceeding, note that V~/C = 2.4 is not 
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large, 30 the skinny string approximation is not well justified. 

So far, I have discussed a model with a z2 symmetry. It is not 

clear that the system of walls that form in this case will conformally 

expand. The problem is that the walls form bubbles. The different 

bubbles are isolated from each other. Consider a region between bubbles. 

Locally the stress-energy density is that of primeval background 

radiation. There is nothing to make the local region expand. This is in 

distinction to the normal inflationary scheme where the cosmological 

constant acts everywhere, 30 each local region of space expands in the 

Same way. If one considers the expansion of a single spherical bubble in 

an asymptotically flat background one finds that the bubbles will 

eventually collapse under their self gravitational interactions.24 This 

suggest3 that isolated bubbles cannot inflate space and fill the voids 

with their decay products. Fortunately, it is not difficult to see what 

modifications might avoid this problem. One needs a connected framework 

of walls. To construct such a framework one need3 a model which allows 

three or more wall3 to join. The junction of the walls should have the 

topological characteristics of a string. To allow for the joining of 

three wall3 the model must allow for at least three types of vacuum 

domains. To use the walls for inflation, the walls must be unstable. It 

is not necessary for the strings to be unstable, since heavy stable 

strings are not in conflict with cosmology.25 A3 the reader might guess 

it is not difficult to construct a scalar potential that has these 

properties, although finding a compelling and believable model is a more 

formidable task. 
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An interesting possibility is that one might find unstable domain 

wall3 in more familiar grand unified theories. For example, in an SU(5) 

model that progresses from SU(5) to N(4) x U(1) and then to SU(3) x 

SU(2) x U(1) the second phase transition might produce unstable walls. 

A3 pointed out by Guth and Weinberg3 there are two types of bubbles that 

may take N(4) x U(1) into W(3) x SU(2) x U(1). One type of bubble is 

SU(3) x U(1) x U(1) symmetric while the other has N(2) x SU(2) x U(1) 

symmetry. Regions of space that tunnel via different bubble types should 

be separated by walls. Since the final state vacuum on either side of a 

wall is the same, the wall3 may decay. However, these walls are probably 

not important for cosmology because the action for the two types of 

bubbles to form is not degenerate.3 One expects few bubbles of the N(2) 

x N(2) x U(1) type and it seems unlikely that those regions could 

percolate. Unless they do percolate, all such domains will be bounded 

and the domain walls will collapse instead of driving an inflationary 

phase. 

Finally, I would like to suggest that it is not difficult to create 

other unstable topological features such as monopoles or strings. The 

key point of the model presented in this appendix is that between a 

unique initial state and a unique final state there are two classical 

histories that are equally likely. The choice of which history actually 

occur3 breaks the discrete symmetry and as a result walls form. 

Similarly, call the set of histories leading to a unique final state H. 

If n,(H) is non-trivial unstable strings can form. If n2(H) is 

non-trivial unstable monopoles can form. 
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Figure Captions 
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Figure Al. Behavior of <e> as a function of temperature. As T changes 

from T > T c to T < T, the slope of the potential changes sign. As a 

result <$> roll3 from -E,v to +cv. <$> may roll by either of two paths, 

labelled A and B, which lie in the ring of relative minima of V(e). 

Figure A2. Different structure3 of a) topologically stable domain 

Walls and b) topologically unstable but classically stable walls, The 

arrows indicate the local value of e. The walls lie perpendicular to the 

page in the y-z plane. The histories A, B are described in Fig. Al. 
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